Matrix metalloproteinases as mediators of reproductive function.

نویسندگان

  • D L Hulboy
  • L A Rudolph
  • L M Matrisian
چکیده

The organs of the adult reproductive system can undergo extensive remodelling, experiencing rapid changes in tissue mass and function. Much of this matrix remodelling is attributed to the action of matrix metalloproteinases. Matrix metalloproteinase family members are expressed in a highly-regulated manner in many reproductive processes, including menstruation, ovulation, implantation, and uterine, breast, and prostate involution. Metalloproteinase concentrations and activity can be regulated by reproductive hormones, as well as by growth factors and cytokines that participate in reproductive events. In addition to playing a role in the loss of connective tissue mass, the metalloproteinases can influence the phenotype of the cellular components of the tissues, altering basic cellular functions such as proliferation, differentiation, and apoptosis. This review focuses on the expression of matrix metalloproteinases in reproductive tissues, and discusses the evidence supporting a role for these enzymes in modulating the structure and function of reproductive organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of MMP9 C-1562T and MMP2 G1575A genetic variants in male infertility: review article

Infertility as a vital process in human reproduction involves many couples worldwide. Although many genetic causes of infertility are known, the genetic basis of infertility in men is largely unknown. Therefore, the identification of genetic biomarkers in this field is important and genetic polymorphisms in key genes of the spermatogenesis pathway can be valuable biomarkers in this field. Gene'...

متن کامل

P 88: Matrix Metalloproteinases in Neuroinflammation

Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...

متن کامل

P-136: Association of Matrix MetalloProteinase- 2,-9 Overexpression and Imbalance PR-A/PR-B Ratio in Endometriosis

Background: Matrix MetalloProteinases (MMPs) degrade extracellular matrix components to provide normal remodeling and contribute to pathological tissue destruction and cell migration in endometriosis. It is accepted that MMPs are resistant to suppression by progesterone in endometriotic tissues. The physiological effects of progesterone are mediated by its two progesterone receptor (PR) isoform...

متن کامل

Repression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study

Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...

متن کامل

Expression of Matrix Metalloproteinase-2/9 and Tissue Inhibitor of Metalloproteinase-1/2 as Predictive Factors in Oropharyngeal Squamous Cell Carcinoma

Introduction: Metalloproteinases and their tissue inhibitors play an important role in the metastases formation. A multistage process of carcinogenesis requires the involvement of numerous enzymes and compounds that facilitate the expansion of tumor cells. The formation of metastases depends on both metalloproteinases and tissue inhibitors activation leading to the acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 1997